Plant hormones coordinate growth, development, and responses to environmental stimuli through complex signaling networks (Davies, 2010). Traditional approaches have focused on individual hormone functions, but emerging evidence suggests extensive crosstalk and interdependence among hormone pathways (Santner et al., 2009). This paper proposes a unifying framework where plant hormones primarily function as nutrient status signals, coordinating cellular responses based on resource availability.
The concept of hormones as resource indicators has precedent in animal physiology, where hormones like insulin signal nutrient abundance and coordinate anabolic processes (Saltiel & Kahn, 2001). Similarly, stress hormones like cortisol coordinate responses to resource scarcity (Sapolsky et al., 2000). We propose that plant hormones evolved analogous functions, with specific hormones indicating the abundance or scarcity of essential nutrient classes.
We classify plant nutrients into four fundamental categories based on their origin and transport:
This classification reflects the distinct physiological systems involved in nutrient acquisition and transport (Taiz et al., 2015).
We propose that eight major plant hormones function as paired abundance/deficiency signals for these four nutrient classes:
This pairing reflects observed physiological responses and provides a framework for understanding hormone interactions.
Auxin (indole-3-acetic acid, IAA) exhibits properties consistent with an oxygen abundance signal:
Ethylene production increases under anaerobic conditions and coordinates responses to oxygen limitation:
Cytokinins are synthesized primarily in roots and transported to shoots, consistent with their role as mineral status indicators:
Salicylic acid (SA) exhibits properties consistent with water abundance signaling:
The apparent contradiction of SA closing stomata can be explained by its dual role in pathogen defense, where closure prevents pathogen entry regardless of water status (Melotto et al., 2006).
Gibberellins (GA) and brassinosteroids (BR) coordinate responses to carbohydrate limitation:
The classification of BR with GA reflects their synergistic effects on carbohydrate mobilization and growth promotion under resource limitation (Clouse, 2011).
This model acknowledges that excess nutrients can be as problematic as deficiency, requiring disposal mechanisms.
This model emphasizes the importance of environmental context in hormone interpretation.
This framework suggests that hormone signaling systems evolved to optimize resource allocation in the face of variable nutrient availability. The paired abundance/deficiency signals may have evolved from simpler regulatory systems, with increasing sophistication allowing more precise resource management.
The framework presented here offers a unifying perspective on plant hormone function, proposing that hormones primarily serve as nutrient status indicators coordinating cellular responses to resource availability. While speculative in nature, this framework generates testable predictions and provides new insights into hormone interactions.
The proposed four-hormone requirements for cell division and senescence represent significant departures from current thinking but are consistent with the logic of resource-dependent cellular processes. As our understanding of hormone crosstalk increases, such integrated perspectives may prove essential for understanding plant physiology.
This framework should be viewed as a working hypothesis to guide experimental design rather than established fact. Its value will ultimately be determined by its ability to generate new insights and improve our understanding of plant hormone biology.
References
Abeles, F. B., Morgan, P. W., & Saltveit, M. E. (1992). Ethylene in Plant Biology (2nd ed.). Academic Press.
Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., & Harberd, N. P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311(5757), 91-94.
Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043), 824-827.
Bethke, P. C., Hwang, Y. S., Zhu, T., & Jones, R. L. (1997). Global patterns of gene expression in the aleurone of wild-type and gibberellin-deficient/insensitive barley seeds during germination. Plant Physiology, 115(3), 1137-1148.
Browse, J. (2009). Jasmonate passes muster: a receptor and targets for the defense hormone. Annual Review of Plant Biology, 60, 183-205.
Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., Lin, J. F., Wu, S. H., Swidzinski, J., Ishizaki, K., & Leaver, C. J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42(4), 567-585.
Clouse, S. D. (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23(4), 1219-1230.
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 61, 651-679.
Davies, P. J. (2010). Plant Hormones: Biosynthesis, Signal Transduction, Action! (3rd ed.). Springer.
Drew, M. C., He, C. J., & Morgan, P. W. (2000). Programmed cell death and aerenchyma formation in roots. Trends in Plant Science, 5(3), 123-127.
Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis Book, 11, e0166.
Gan, S., & Amasino, R. M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 270(5244), 1986-1988.
Gan, S., & Amasino, R. M. (1997). Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 113(2), 313-319.
Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman, J. F., & Dommes, J. (2002). Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regulation, 37(3), 263-285.
Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., Letisse, F., Matusova, R., Danoun, S., Portais, J. C., Bouwmeester, H., Bécard, G., Beveridge, C. A., Rameau, C., & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194.
Gordon, S. P., Chickarmane, V. S., Ohno, C., & Meyerowitz, E. M. (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences, 106(38), 16529-16534.
Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, 116(6), 483-505.
Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530.
Himelblau, E., & Amasino, R. M. (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology, 158(10), 1317-1323.
Jackson, M. B. (1985). Ethylene and responses of plants to soil waterlogging and submergence. Annual Review of Plant Physiology, 36(1), 145-174.
Kaneko, M., Itoh, H., Ueguchi-Tanaka, M., Ashikari, M., & Matsuoka, M. (2002). The α-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium. Plant Physiology, 128(4), 1264-1270.
Kapulnik, Y., Delaux, P. M., Resnick, N., Mayzlish-Gati, E., Wininger, S., Bhattacharya, C., Séjalon-Delmas, N., Combier, J. P., Bécard, G., Belausov, E., Beeckman, T., Dor, E., Hershenhorn, J., & Koltai, H. (2011). Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233(1), 209-216.
Khokon, M. A. R., Okuma, E., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, T., Mori, I. C., & Murata, Y. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant, Cell & Environment, 34(3), 434-443.
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168.
Leibfried, A., To, J. P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J. J., & Lohmann, J. U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438(7071), 1172-1175.
Ljung, K., Bhalerao, R. P., & Sandberg, G. (2001). Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal, 28(4), 465-474.
López-Ráez, J. A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., Bécard, G., Mulder, P., & Bouwmeester, H. (2008). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 178(4), 863-874.
Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126(5), 969-980.
Overvoorde, P., Fukaki, H., & Beeckman, T. (2010). Auxin control of root development. Cold Spring Harbor Perspectives in Biology, 2(6), a001537.
Petrasek, J., & Friml, J. (2009). Auxin transport routes in plant development. Development, 136(16), 2675-2688.
Phillips, G. C. (2004). In vitro morphogenesis in plants—recent advances. In Vitro Cellular & Developmental Biology-Plant, 40(4), 342-345.
Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338.
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799-806.
Saniewski, M., Horbowicz, M., Puchalski, J., & Ueda, J. (1998). Methyl jasmonate stimulates the formation and accumulation of anthocyanin in Kalanchoe blossfeldiana. Acta Physiologiae Plantarum, 20(2), 143-148.
Santner, A., Calderon-Villalobos, L. I., & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5(5), 301-307.
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55-89.
Sharp, R. E., & LeNoble, M. E. (2002). ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany, 53(366), 33-37.
Skoog, F., & Miller, C. O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 11, 118-130.
Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G. T., Sandberg, G., Bhalerao, R., Ljung, K., & Bennett, M. J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. The Plant Cell, 19(7), 2186-2196.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development (6th ed.). Sinauer Associates.
Takei, K., Sakakibara, H., & Sugiyama, T. (2001). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. Journal of Biological Chemistry, 276(28), 26405-26410.
Visser, E. J., Cohen, J. D., Barendse, G. W., Blom, C. W., & Voesenek, L. A. (1996). An ethylene-mediated increase in sensitivity to auxin induces adventitious root formation in flooded Rumex palustris Sm. Plant Physiology, 112(4), 1687-1692.
Vlot, A. C., Dempsey, D. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177-206.
Wasternack, C., & Hause, B. (2013). Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111(6), 1021-1058.
Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781-803.
Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., & Nakashita, H. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. The Plant Cell, 20(6), 1678-1692.
Yoshihara, T., Omer, E. A., Koshino, H., Sakamura, S., Kikuta, Y., & Koda, Y. (1989). Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agricultural and Biological Chemistry, 53(10), 2835-2837.